

Southern California Edison

DER Integration Projects

August 18, 2015

SCE's EPIC-1 Portfolio

Project Name	Project Status	Project End Date
Integrated Grid Project (IGP)	Execution Phase	2017
Voltage and VAR Control of SCE Transmission System	Execution Phase	2018
Wide-Area Reliability Management & Control	Execution Phase	2017
Dynamic Line Rating Demonstration	Execution Phase	2016
State Estimation Using Phasor Measurement Technologies	Execution Phase	2017
Distribution Planning Tool	Execution Phase	2016
Portable End-to-End Test System	Execution Phase	2016
Distributed Optimized Storage (DOS)	Execution Phase	2017
SA-3 Phase III Demonstration	Execution Phase	2017
Next-Generation Distribution Automation	Execution Phase	2017
Outage Management and Customer Voltage Data Analytics Demonstration	Execution Phase	2015
Enhanced Infrastructure Technology Evaluation	Execution Phase	2017
Beyond the Meter: Customer Device Communications, Unification and Demonstration (Phase II)	Execution Phase	2017
Regulatory Mandates: Submetering Enablement Demonstration	Execution Phase	2016
Cyber-Intrusion Auto-Response and Policy Management System (CAPMS)	Execution Phase	2015

Today's Presentations:

- Integrated Grid Project
- Next-Generation Distribution Automation

^{*}Projects highlighted above support the workshop theme of DER integration

SCE's EPIC investment portfolio focuses on pre-commercial technologies and strategies based on technology maturity assessment

EPIC-2 List of Potential Projects

Renewables and Distributed Energy Resources Integration

- Dynamic Distribution Circuit Configuration for Storage Siting
- Optimized Control of Multiple Storage Systems
- Online Security Assessment Tools
 Demonstration
- Bulk System Restoration Under High Renewable Resources Penetration Demonstration

Grid Modernization and Optimization

- System Intelligence & Situational Awareness
- Next Generation Distribution Automation & Equipment
- Fast Dynamic Voltage & Frequency Response
- Dynamic Power Conditioner
- Series Compensation for Load Flow Control
- Special Protection Scheme Platform
- Proactive Storm Impact Analysis Demonstration
- Advanced Grid Capabilities Using Smart Meter Data
- Versatile Plug-in Auxiliary Power System (VAPS)

Customer Focused Products and Services

- Regulatory Mandates: Submetering Enablement Demonstration – Phase 2
- Integration of Big Data for Advanced Automated Customer Load Management
- DC Fast Charging Demonstration
- Energy Savings Model Demonstration Using Smart Meter Data

Cross-Cutting / Foundational Strategies & Technologies

- Regional Grid Optimization Demonstration
- CAISO Operations & Utility Grid Coordination
- Microgrid for Enhanced Grid Reliability & Security

Integrated Grid Project

Presenter: Robert Sherick

Principal Manager, Power System Technologies

Objectives of the IGP

- Facilitate high penetration of DERs by demonstrating next generation grid infrastructure
- Demonstrate controls to manage, operate, and optimize DERs
- Demonstrate ability to optimally operate an integrated distribution system to provide safe, reliable, affordable service
- Obtain results to help determine value of DERs

IGP Focus Areas on DER Integration

• Implement:

- Advanced communications and cyber-security
- Increased circuit monitoring and control
- Communication to DERs (PV, storage and DR)
- Integrated controls

• Benefits:

- Improve Operator's visibility of DERS
- Manage circuit loading
- Improve circuit voltage
- Improve reliability
- Reduce circuit losses
- Facilitate higher adoption of DERs

IGP Subprojects

Advanced Substation and Circuit Automation	Volt/VAR Optimization with DER Participation	Power Flow Optimization with DER Participation	High Penetration DER Demonstration (Demo D)
SP 1	SP 2	SP 3	SP 4
Resource Incentives	Field Area Network for Distribution	Advanced Cyber Security Detection	Integration and Messaging
	Applications	and Integration	Wicssaging

Implementation Plan

Milestones	Due	Status			2016		'17 18		'18			
	Date		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		10
Regulatory and Financial Planning		-										
1. File EPIC annual report	2/26/16	•										
Deployment Planning												
1. Finalize project scope	6/15/15	✓										
2. Complete system requirements and conceptual design	8/31/15	•										
3. Develop DER Acquisition Strategy (in collaboration w/ PRP)	9/30/15	•										
4. Finalize detailed design and implementation plan	12/31/15	•										
5. Prepare detailed specifications and release RFPs	12/31/15	•										
Implementation												
Phase 1: Initial Operational Capability												
1. Early Deployment Opportunities	12/31/15	•					l					
2. Evaluate RFPs and award IGP contracts	3/31/16	•						[
3. Complete field installation and initial integration	9/30/16	•								[
4. Acquire and deploy first phase of DER portfolio	9/30/16	•								Ī		
5. Finalize plan for Phase 2 deployments	10/31/16	•										
Phase 2: Integrated Functionality												
Complete remaining procurement	12/31/16	•									I	
2. Complete field installation and 2nd integration (DRP-D)	3/31/17	•										
3. Acquire and deploy second phase of DER portfolio	6/30/17	•										
4. Finalize plan for Phase 3 deployments	7/31/17	•										
5. Report initial monitoring results and key learnings	9/30/17	•										
Phase 3: Advanced Capabilities												
1. Complete remaining field installation and final integration	10/31/17	•										
2. Resource Incentive Demonstration	12/31/17											
IGP Demonstrations Operational	12/31/17											
✓ Complete												

Next-Generation Distribution Automation

Presenter: Bryan Pham

Sr. Manager, Automation/Communications

Next-Gen Distribution Automation

- Current distribution automation technology relies heavily on human intervention, aging technology architecture, and isn't optimized for integrating distributed energy resources (DER).
- SCE's current switching scheme can take several minutes to isolate half the load of an affected circuit and doesn't support bi-directional power flow.
- No reliable or effective method exists to detect high-impedance faults.
- The Next-Generation Distribution Automation project will demonstrate:
 - Remote Intelligent Switch (RIS): auto circuit reconfiguration.
 - Remote Fault Indicators (RFIs): accurately identify faults quickly.
 - Intelligent Fuse: automated branch line protection.
 - High Impedance Fault Detection: detect downed energized lines.
- Integrate DER through greater telemetry and programmable logic controls.
- Minimize quantity of customer service interruptions.
- Quicker fault detection, isolation, and restoration.
- Improve communication between automation devices.
- Identify an effective and reliable method for detecting high impedances.

Demonstration Activities to Date

Remote Fault Indicators (RFIs)

- Demonstrated overhead remote fault indicators from three competing suppliers.
- In process of approving one supplier as SCE standard.
- Large deployment planned as part of Grid Modernization.

RFI Sensors

High Impedance Fault Detection

- Completed a proof-of-concept Spread Spectrum Time Domain Reflectometry (SSTDR) technology and distance measurement techniques to detect location of broken non-energized conductor.
- Enhance detector algorithm for maximum number of branching circuits.
- Continued field testing and algorithm refinement
- Developed software to include GIS data in algorithmic analyze of circuit.

Demonstration Activities to Date

Remote Intelligent Switch (RIS)

- Completed Request for Information (RFI) and Request for Proposal (RFP) with seven (7) potential suppliers.
- Awarded RIS scope of work to one supplier.

RIS Controller

Intelligent Fuse

 Drafted Request for Proposal (RFP) in order to receive competitive bids from potential suppliers.

Next Steps

Remote Fault Indicators

- Complete firmware update, automated deployment process, and standardization for overhead RFI's.
- Install and demonstrate underground RFI's.

High Impedance Fault Detection

- Design and build prototype system.
- Demonstrate solution on energized conductor.

Remote Intelligent Switch

- Finalize RIS Low-Speed Algorithm (Phase 1).
- Conduct factory acceptance testing (FAT) for Phase 1 activities.
- Prepare for site acceptance testing (SAT) and pilot for Phase 1 activities.

• Intelligent Fuse

 Release Request for Proposal (RFP) to suppliers and issue purchase order to winning bidder.

